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Abstract—Fog computing can support IoT services with fast
response time and low bandwidth usage by moving computation
from the cloud to edge devices. However, existing fog com-
puting frameworks have limited flexibility to support dynamic
service composition with a data-oriented approach. Function-
as-a-Service (FaaS) is a promising programming model for fog
computing to enhance flexibility, but the current event- or
topic-based design of function triggering and the separation of
data management and function execution result in inefficiency
for data-intensive IoT services. To achieve both flexibility and
efficiency, we propose a data-centric programming model called
Fog Function and also introduce its underlying orchestration
mechanism that leverages three types of contexts: data context,
system context, and usage context. Moreover, we showcase a
concrete use case for smart parking where Fog Function allows
service developers to easily model their service logic with reduced
learning efforts compared to a static service topology. Our
performance evaluation results show that the Fog Function can
be scaled to hundreds of fog nodes. Fog Function can improve
system efficiency by saving 95% of the internal data traffic over
cloud function and it can reduce service latency by 30% over
edge function.

Index Terms—serverless computing, fog computing, edge com-
puting, IoT services, data-centric programming model, function-
as-a-service

I. INTRODUCTION

With the proliferation of IoT devices such as sensors, cars,
drones, and robots, these IoT devices not only produce lots of
data but increasingly consume the output of machine learning
powered data processing pipelines to take actions in a timely
fashion [1]. Usually, data producers and consumers are linked
via IoT services that implement the data processing logic to
transform raw data into actionable results. Previously, central
clouds have been used as the main underlying infrastructure for
hosting such IoT services. However, due to the requirements of
short response time and low bandwidth use of many services
associated with connected vehicles, drones and cameras, there
is a strong need to move data processing from the cloud
to the network edges that are close to both producers and
consumers [2]. This paradigm shift is generally labelled fog
or edge computing, which involves computing in both cloud
and edge environments [3]. For consistency we will use the
term fog computing throughout the paper.

Various fog computing frameworks exist, such as Azure
IoT Edge [4], AWS Greengrass [5], EdgeX [6], and Baidu
OpenEdge [7]. However, their programmability for IoT ser-
vices is limited in terms of flexibility due to the below reasons.

1) The design and deployment of services is bound to specific
edge devices. This is an edge-oriented approach and re-
quires service developers to statically define which service
module should be deployed on which type of edge device.
The set of service modules running on an edge device
is fixed after deployment. However, for situation-aware
IoT applications, different service modules need to be
triggered dynamically at the network edge according to
the availability and mobility of IoT devices. This requires
a data-oriented approach.

2) Existing fog computing frameworks have poor support for
data-intensive IoT services. For example, most existing fog
computing frameworks use a topic-based pub/sub interface,
such as MQTT, for communication between different edge
service modules and require a manual configuration of the
data routing path. This is problematic when a running task
instance at the edge needs to be migrated to the cloud or
another edge because of device mobility, workload fluctu-
ation or when we need to add or remove service modules
dynamically due to changing business needs. Therefore,
IoT services require a dynamic service composition.

Recently, serverless computing [8] is promoted by major
cloud providers to support Function-as-a-Service (FaaS) com-
puting in a lightweight, dynamic and event-driven manner. At
first glance, this makes it a good fit for the dynamic char-
acteristics of fog computing. However, serverless computing
frameworks only deal with the execution management of func-
tions, completely separating it from data management. This
separation benefits the simplicity of serverless computing, but
has drawbacks for data-intensive batch and stream processing
applications [9], [10]. For fog computing, where data locality
is paramount, this separation is a deal breaker and results in
poor system efficiency.

In this paper, we design and implement serverless fog com-
puting to support data-centric IoT services in an edge-cloud
environment. We address the limitations of existing serverless
computing and fog computing frameworks, improving their
efficiency and flexibility. Specifically, we propose a fog func-
tion programming model and a context-driven orchestration
runtime system to enable serverless fog computing. Our main
technical contributions are listed as follows:

• We design Fog Function as an enhanced Function-as-a-
Service programming model, which relaxes the lifetime and
resource constraints of traditional cloud functions and allows

ar
X

iv
:1

90
7.

08
27

8v
1 

 [
cs

.D
C

] 
 1

8 
Ju

l 2
01

9



Public/Private Cloud

Edge Server A

Edge Server B

Metadata Visual Sensors Location State Camera URL MaintenanceCar Entity

Road Entity

Driving Behavior Analysis

GPS 
sensor 

Device 
Layer

Edge 
Layer

Cloud 
Layer

Migration as the car moves

Camera

Real-time Traffic Estimation

Car Insurance Assessment

State Monitoring

New Functions

Road Damage Detection

Dangerous situation 
detection 

Fig. 1: The connected car use case.

the seamless move from code to data or from data to code.
Based on the validation and analysis of two use cases, we
show that Fog Function is more flexible and efficient than
traditional event-based cloud functions to support serverless
fog computing for data-intensive IoT services.

• We propose a context-driven orchestration mechanism to
dynamically and automatically trigger, configure, and opti-
mize the deployment of Fog Function in cloud and edge
environments. Our approach not only supports mobility
aware task migration and but also achieves better load
balance across edge nodes as compared to edge-oriented
approaches applied in current fog computing frameworks.

• We introduce the detailed mechanism of task deployment
and migration to support context-driven Fog Function and
report the performance results in terms of latency and
scalability.

II. MOTIVATION AND GAP ANALYSIS

A. Motivating Use Case

Several domains, such as smart cities, automotive, and smart
manufacturing benefit from serverless fog computing. For
example, with a growing number of connected cars, there
is an emerging demand to deploy IoT services to enhance
driving experience and safety by leveraging the data produced
by connected cars and other data sources. Figure 1 depicts
such scenario with four IoT services based on data from four
entity types: Road, Car, Camera, and GPS sensor:

(S1) State monitoring: This service takes the location updates
of a car and then checks whether the car is moving in a
normal state; in the end it updates the state of the car entity.

(S2) Driving behavior analysis: If the car is in an unusual state,
this function will be triggered for a detailed inspection of
the driver’s behavior, based on the captured image from a
camera in the car.

(S3) Real-time traffic estimation: Estimate the real-time traffic
information aggregated at various levels, e.g., per road, per
district, per city.

(S4) Dangerous situation detection: Detect any dangerous situ-
ation on the road and then update the road entity in order
to inform the other drivers behind on the same road.

B. Diversity and Dynamics of IoT Data and Workload

In the car use case the diversity and dynamics of IoT data
and workload are reflected by the following observations.
Assume that all data are represented as entities while the
workloads of IoT services are represented by data processing
tasks. Each task takes some entities in, performs some internal
data processing, and then produces some outputs to create new
entities or update existing entities.
(O1) Small vs. big entity: Entities processed by IoT services
differ in size. For example, a car entity can contain lots of
information about the car, such as location, manufacture infor-
mation, embedded sensors, cameras, maintenance information,
and other metadata. A road entity might be small.
(O2) Static vs. dynamic entity: Some entities are static or do
not change frequently, while others change frequently. E.g.,
the location of a car entity changes constantly.
(O3) Small vs. big task: The required computation per task
differs. For example, the state monitoring task is much more
light-weight than the image-based driving behavior analysis.
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(O4) Short vs. long task: The lifetime of tasks differs and is
often bound to the availability of input data. For example, the
driving behavior analysis is only triggered if the car entity
state is set to be “abnormal” by the state monitoring task.
(O5) Normal vs. urgent task: Different tasks might have
different priorities. For example, S4 has higher priority than
all the other services and it needs to have more resource or
even exclusive resource usage at computing edges since the
available resource at each edge is usually limited.
(O6) Existing vs. new task: New services might be added on
the fly at runtime. For example, road damage detection can be
deployed to assess the road condition and then trigger timely
road inspection and maintenance; suspect detection can be
launched by the law enforcement office to search and track
suspicious attackers during an emergency situation. These
new tasks need to reuse raw data published by devices and
intermediate results generated by other existing tasks.

C. Gap Analysis

To realise these IoT services the following two expectations
need to be met: First, in the design phase, service providers
want to have the flexibility to add, remove, update, and
compose services on the fly as their business evolves over
time. Second, during the operating phase, these services should
be able to run seamlessly and efficiently across geo-distributed
clouds and edges managed by infrastructure providers. To meet
both expectations, we identify the following gaps that a fog
computing framework needs to address:
(G1) Data discovery and routing: from topic-based to content-
based: Raw data and intermediate results should be forwarded
to different tasks based on their needs. Existing fog comput-
ing frameworks use a topic-based pub/sub interface, such as
MQTT, to configure the data routing paths between different
tasks. However, representing all entity data with topics is
inefficient because some task might only need part of the
whole entity data (O1). Thus, to efficiently discover and
forward any required data to a task, the management and
discovery of IoT data needs be content-based.
(G2) Function triggering: from per event to per selected en-
tities: In existing serverless computing frameworks, functions
are invoked per event with limited execution time and memory
size. This is not suitable for data-intensive IoT services (O3
and O4). First, it is difficult for service designers to know
the execution time and memory size required by a function
during the design phase. Second, the input of a function can
be a single entity update or a stream of updates (O2) and
lifetime is usually associated with the availability of input data.
Triggering a function with the availability of its inputs not only
avoids the effort to explicitly define the triggering event, but
also allows service developers to follow data-centric design
principles.
(G3) Function execution: from data→code or code→data to
code↔data: Existing serverless computing frameworks sepa-
rate data management from the function execution environ-
ment, always moving data into the execution environment for
function execution (data→code pattern). On the other hand,

existing fog computing frameworks such as Azure IoT Edge
move cloud functions to the data located at the edges. This
follows a code→data pattern. With regards to our observations
O2, O3, and O4, the workload of various IoT data processing
tasks is highly diverse and changes over time, requiring a
dynamic and transparent placement of data and code.
(G4) Function composition: from event-oriented or edge-
oriented to data-centric: Observation O6 indicates a strong
need for function composition. In existing serverless com-
puting frameworks such as OpenWhisk [11], service devel-
opers need to customize a series of event triggers and rules
to link multiple functions together. Existing fog computing
frameworks allow service developers to link functions at each
edge by manually configuring the topic-based data routing
path between them. However, for data-intensive IoT services,
a data-centric approach is more efficient and flexible because
it can directly take advantage of the data dependency between
different functions and perform function composition with a
global view of the entire data layer, rather than a subview of
each edge.

III. FOG FUNCTION FOR SERVERLESS FOG COMPUTING

To fill the aforementioned gaps, we propose a new data-
centric function programming model called Fog Function. We
also introduce the underlying context-driven service orchestra-
tion mechanism of the programming model.

A. High Level System View

Figure 2 shows the high level view of our system for the or-
chestration of fog functions. The system consists of a number
of fog nodes, each of which runs a Broker and a Worker. A
management node runs two centralized components, namely
Discovery and Orchestrator. Each node is a Virtual Machine
(VM) or physical host deployed either in the cloud or at
edges. All fog nodes form a hierarchical overlay based on
their configured GeoHash IDs. All data in the system are
represented as entities saved by a Broker and indexed by the
centralized Discovery for discovery. The data can be raw data
published by IoT devices, intermediate results generated by
some running data processing tasks, or available resource data
reported by fog nodes. When a fog function is registered,
Orchestrator will subscribe to the input data of the fog function
to Discovery. Once the subscribed data appear or disappear
in the system, Orchestrator will be informed and then take
orchestration actions accordingly, which will be carried out
by an assigned worker.

Notice that with our approach the orchestration is also
driven by events but limited to only two pre-defined events:
entity “appear” or “disappear”. It also provides a declarative
interface for service designers to easily annotate which data
should be used to trigger which function with a customizable
granularity and some other high level orchestration intentions.
Therefore, service designers can fully focus on the data aspect
without explicitly defining the triggering events. Figure 3
shows the relationship between the identified gaps and our
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B. Fog Function Programming Model

Each fog function is presented as an entity as well, but it
is annotated with the following attributes.

• Name: a unique identity of the function.
• Operator: the name of a data processing operator. The op-

erator is implemented as a dockerized application based
on the interface of fog function described below. The
specified operator is instantiated at runtime by a Worker
as a task with its configured inputs and outputs. The task
is deployed in a dedicated Docker container running on
a fog node.

• Inputs: a set of selected inputs required by the operator
to do internal data processing.

• Outputs: the entity type generated by the operator.
• Geoscope: the geoscope to be applied when selecting

input data for this fog function.
• Priority: the priority of this fog function, which will be

taken into account by workers to decide how to assign
their limited resources to different functions at fog nodes.

• SLO: the expected Service Level Objective, which is
defined as various optimization goals, for example, min-
imizing the latency to produce outputs, maximizing the
accuracy of generated results, or minimizing the band-
width usage across fog nodes. Different SLO leads to
different task deployment plans.

The last four attributes are optional. The inputs are the key
for Orchestrator to decide when to trigger the fog function and
how to create its tasks. Each input is further defined with the
following information.

• SelectedType: the entity type of this selected input.
• AttributeSet: the required attributes of the selected entity.
• Constraints: the filters to further select input entities

based on some specific attribute values.
• GroupBy: the granularity to control how many tasks

should be instantiated and how the selected input entities
should be assigned across its tasks. It can be defined as
“per entityID”, “per entityType”, or “per attributeValue”.

• Scoped: this could be true or false and it is used to decide
whether geoscope should be applied to select input data
when the geoscope is defined with the fog function.

The designed interface for developers to program an op-
erator is shown as below. The first parameter entity is the
received data for internal processing. The other parameters,
publish, query, and subscribe, are the callback functions for the
internal function code to interact with the data management
layer via a nearby broker assigned by Discovery, such as,
publish generated entity data, query or subscribe additional
information.

function(entity, publish, query, subscribe)

As compared to the existing FaaS programming models like
Cloud Function in existing cloud-based serverless computing
frameworks or Edge Function in the existing edge-centric fog
computing frameworks, Fog Function has a similar interface
for developers to write function code, but it provides some
unique annotations for the underlying runtime system to effi-
ciently trigger, execute, and compose functions over cloud and
edges in a flexible and transparent manner. The comparison
results are summarized in Table I from different perspectives.

C. Content-based Discovery

The context management layer consists of a network of
Broker(s) and a centralized Discovery. It is designed to provide
a global view for all system components and running tasks to
query, subscribe, and update context entities via the unified
and standardized data model and communication protocol,
namely NGSI [12]. It plays a very important role to support
the orchestration of Fog Function. As illustrated by Figure 4,
in our design a large number of distributed Brokers work in
parallel under the coordination of the centralized Discovery.
The Discovery component can be used to discover both
devices, intermediate data, and available resources at fog nodes
as well.

As compared to the topic-based data management in exist-
ing systems like MQTT-based Mosquitto or Apache Kafka,
our two-layer context management design has the following
features: 1) separating context entity data and their availability;
2) providing separated and standardized interfaces to manage
both context data (via NGSI10 [12]) and context availability
(via NGSI9 [12]); 3) supporting not only ID-based and topic-
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TABLE I: Comparison with existing function-based programming models

Function-based programming models
Differentiator Cloud Function Edge Function Fog Function

Execution environment centralized cloud each edge cloud and edges
Input and output bindings one event per topic selected entities

Configuration none none tunable parameters
Task granularity none none definable

Trigger per event per edge availability of selected entities
Execution pattern data → code code → data code ↔ data

Migration yes no yes
Priority none none yes

Service level objective none none definable

Discovery

Broker

Broker

Broker

Context
producers

Context 
consumers

update

NGSI9

NGSI9

NGSI9

subscribe/query

NGSI10

NGSI10 • manage the global context availability
• index the metadata of all entities

• manage its local context entities
• provide a single view of all context entities

Fig. 4: Context discovery with two-layer design

based query and subscription but also geoscope-based or
attribute-based query and subscription.

D. Data-driven Function Orchestration

Figurer 5 shows the major procedure for Orchestrator to
orchestrate fog functions based on the update notification of
context availability of their input data, provided by Content-
based Discovery. More specifically, the following four basic
orchestration actions are designed to dynamically orchestrate
tasks for each registered fog function.

• ADD TASK: To launch a new task with the given config-
uration that includes the initial setting of its input streams.
When launching a new task, the Worker first fetches
the Docker image for this task and then launches and
configures this task within a dedicated Docker container.
After that, the Worker subscribes the input entity to the
context management system on behalf of the running task
so that the input streams can be received by the running
task; in the end, the newly created task is reported back
to the orchestrator.

• REMOVE TASK: To terminate an existing running task
with the given task ID. When terminating an existing task,
the Worker not only stops and removes its corresponding
Docker container, but also unsubscribes its input streams
so that the context management system does not end up
with lots of unavailable subscribers.

• ADD INPUT: To subscribe to a new input stream on
behalf of a running task so that the new input stream
can flow into the running task.

• REMOVE INPUT: To unsubscribe from some existing
input stream on behalf of a running task so that the task
stops receiving entity updates from this input stream.
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Fig. 5: Data-driven orchestration

E. Context-aware Task Deployment/Migration

Overall the orchestration of Fog Function leverages the
following three types of context information.

Data context: the structure and registered metadata of avail-
able data, including both raw sensor data and intermediate
data. Based on the standardized and unified data model and
communication interface, namely NGSI, our system is able
to see the content of all data generated by sensors and data
processing tasks in the system, such as data type, attributes,
registered metadata, relations, and geo-locations.

System context: available resources at each fog node. The
resources in a cloud-edge environment are geo-distributed and
they are dynamically changing over time. As compared to
cloud computing, resources in such a cloud-edge environment
are more heterogeneous and dynamic.

Usage context: high level usage intentions defined by ser-
vice designers to indicate what their fog functions should be
used in the system, such as which type of results is expected
under which type of QoS within which geo-scope.

Task migration is the combination of removing an existing
task on Worker A and adding a new task on another Worker
B. Currently, we only support the migration of stateless tasks,
meaning that the tasks do not hold any persistent internal state
and terminating or restarting them does not lead to any faulty
state or result. More specifically, our design can allow seamless
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task migration across cloud and edges in the following three
cases.

• Cloud→ Edge: for example, if a new edge node joins the
system and it is close to one edge device, a task running
in the cloud can be migrated from the central cloud to
this new edge node in order to save bandwidth.

• Edge→ Cloud: for example, when an edge node becomes
overloaded since it has to handle the workload from lots
of devices in the same region, it can start to migrate
some existing tasks to the cloud in order to keep enough
resource for the other urgent tasks.

• Edge → Edge: for example, when a mobile device such
as a connected car moves from one region (R1) to another
region (R2), it might find another nearby edge node that
can provide lower latency. In this case, it is better to
migrate the task to the edge node in R2. In this case,
tasks are migrated in order to adapt to the movement of
the mobile devices.

IV. IMPLEMENTATION AND USE CASE VALIDATION

Fog Function has been applied into the open source fog
computing framework FogFlow as a new programming model
to enhance its programmability. Originally, FogFlow can or-
chestrate dynamic data flows over cloud and edges using a
service topology [13]. The service topology statically defines
the logical data processing flow of an IoT service and is
triggered on demand by the requests from the consumer side,
but it does not support the composition of multiple service
topologies and it is not flexible to handle use case requirements
which may change over time. Unlike service topology, Fog
Function is simple and flexible and it is triggered when
its input data becomes available. FogFlow can automatically
chain different functions and allows more than one Fog
Function to handle new data items. In the end, the entire
execution graph can be automatically triggered, composed, and
managed as data arrives. From the design perspective, Fog
Function is more flexible than the service topology, because
the overall processing logic of an IoT service can be easily
changed over time by adding or removing functions when the
service processing logic needs to be modified for new use case
requirements.

Using Fog Function, we are able to easily realize a smart
parking use case, which was difficult to achieve with the
service topology programming model. This use case is imple-
mented together with our European project partner, University
of Murcia, based on the real scenario of Murcia City. In
Murcia, there are two types of parking sites, regulated parking
zones that are operated by the city government and can
provide historical information of how parking slots are used
per day, and private parking sites that are operated by private
companies and can provide real-time availability of parking
spots. By utilizing these two types of data sources and other
public transportation information, our smart parking service
can provide real-time and personalized parking recommenda-
tions for drivers.

As illustrated in Fig. 6, we just need to design and imple-
ment dedicated fog functions for each physical object involved
in the use case. For example, one fog function for each
public site to predict how many parking spots are available
per 10 minutes based on their historical information; two fog
functions for each connected car, one to estimate its arrival
time according to the traffic situation on the way and the other
to calculate at which park site the driver can get a parking spot
on arrival. The deployment of those fog function instances are
on the edge node close to their input data sources so that
FogFlow can reduce more than 50% bandwidth consumption
and also provide real-time parking recommendation for each
driver.

Connected 
carprivate 

site

Public
site

Real-time 
estimation

Prediction

Arrival time 
Estimation

Recommender

private parking site

public parking site entity

fog function

Fig. 6: Design of fog functions for a smart parking use case

V. PERFORMANCE EVALUATION

Our performance evaluation has been conducted by using a
set of virtual machines from Google Cloud. The whole system
setting includes 3 parts: 1) a client machine that can simulate
a set of IoT devices; 2) a set of fog nodes, of which each is a
standard VM with 2 vCPU and 7.5 GB memory (“n1-standard-
2”); 3) the cloud part that includes just one more powerful
VM with 8 vCPUs and 7.2 GB memory (“n1-highcpu-8”),
running the two centralized components, namely Orchestrator
and Discovery. To trigger the designed data processing tasks
defined by service topology or Fog Function, we simulate a
set of IoT devices for each test case. For each test case, we
carry out 10 runs of tests. In each test, we start a number of
simulated devices and keep them running for 10 minutes.

A. Latency

Figure 7(a) shows the results of startup latency measured in
the following three scenarios: 1) without launching the actual
task (named as “task-not-launched”); 2) the docker image of
the dummy task is not fetched in advanced (named as “fetch-
image-and-launch-task”); 3) the docker image of the dummy
task is already fetched (named as “only-launch-task”). From
the measurement result, we can see that the big part of the
startup latency happens with fetching the docker image from
public docker registry. Launching a docker container also
requires about 2 seconds. These two parts of latency are also
related to the size of the required docker image. The bigger the
docker image is, the longer it will take. However, the actual
time taken by Orchestrator to make its orchestration decisions
is very short, less than 100 ms. This result indicates that, by
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Fig. 7: Initial measurement results of the FogFlow system

leveraging multiple Workers to launch tasks in parallel, we
can scale up the system easily, even just using a centralized
Orchestrator.

We also measure the latency of migrating one task from one
Worker to another Worker. By design, migrating a task is done
by two orchestration actions: terminating the existing task and
starting a new task. For stateless tasks, these two actions can
be carried out in parallel. Figure 7(b) shows the latency results
of terminating/starting/migrating a task. We can see that the
latency of migrating a task is about 2 ∼ 2.5 second, nearly
equal to the latency of starting a task. This is because the two
orchestration actions (starting a task and terminating a task)
are performed in parallel and starting a task is much slower
than terminating a task.

B. Scalability

We also measured how the FogFlow system can be scaled
up by adding more fog nodes in terms of throughput. The
throughput is defined as the average number of launched tasks
per second. Figure 7(c) shows the result. In the test, we assume
that the docker image is already fetched in advanced. From
the result, we can see that the throughput increases linearly
with the number of fog nodes. With 10 fog nodes, FogFlow
can handle ∼8 tasks per second. As seen in Figure 7(c),
the main bottleneck is actually the underlying docker engine,
which can only launch 1∼3 docker containers per second.
A single Orchestrator can handle the orchestration decisions
for at least 32 FogFlow Workers. In the future, we will
utilize the unikernel-based visualization technology, such as
Unikraft [14], to avoid this bottleneck. In addition, to further
scale up the system, we need to decentralize the Orchestrator
and Discovery as well.

C. Efficiency

We evaluate system efficiency for the Fog Function based
approach in terms of cross-node traffic and service latency and
compare it with the other two approaches: Cloud Function
and Edge Function. Cloud Function represents the existing
severless computing approach for the cloud environment. With
this approach function is triggered by event based on topic
and the data management environment is separated from the
execution environment. Edge Function represents the existing
fog computing frameworks that program services per edge
based on topic. We change the system setting of FogFlow

TABLE II: Comparison with existing function-based program-
ming models

Approaches cross-node traffic (MB) avg. service latency (ms)
small big small big

Cloud Function 86.6 987.3 262 610
Edge Function 3.5 10.8 68 150
Fog Function 3.8 11.4 59 102

and the specification of Fog Function to simulate both Cloud
Function and Edge Function. For topic-based pub/sub, we
use type-based and subscribe to the entire entity; for the
separation of data management and function execution, we
deploy brokers with Discovery and workers with Orchestrator
within two groups of VMs. We simulate 1000 connected car
entities with two types of entity lengths (126 bytes for the
small size case and 1682 bytes for the big size case) to trigger
a simple speed estimation function. Each car reports its current
location every second and each run of test is 10 minutes.
The cross-node traffic is the total amount data transferred
across VMs and the service latency is the delay from when
the raw data are published to when the result is produced.
The comparison results are shown in Table II. As compared
to Cloud Function, Fog Function can reduce more than 95%
cross-node traffic and about 80% service latency by leveraging
data locality. As compared to Edge Function, Fog Function can
reduce 30% service latency for dealing with big entities thanks
to the task migration mechanism, but it slightly introduces
5% additional cross-node traffic. For time-sensitive services,
this improvement is important. Also when considering more
dynamic services, the benefit of Fog Function could be even
more clear because Edge Function will suffer from workload
imbalance.

VI. RELATED WORK

A. Fog/Edge Computing

There are already various fog computing or edge comput-
ing frameworks and approaches. Their programming models
and orchestration mechanisms are defined at different levels,
from the lower layer infrastructure level to the upper layer
application level. For instance, Cloudlet [15] proposes an
edge computing approach to offload computation from mobile
devices to the network edge using virtual machine (VM)
based cloudlets. KubeEdge [16] is an open source system
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extending native containerized application orchestration and
device management to hosts at the edge. Telcofog [17] de-
fines a unified fog and cloud computing infrastructure for
5G networks over distributed clouds based on both VMs
and containers. These frameworks are suitable for generic
standalone applications that can be hosted either in the cloud
or at edges, but they lack a programming model to program
the logic of data-intensive applications. To overcome this issue,
many dataflow-based approaches are proposed. For example,
the initial version of FogFlow [13] can program IoT services
over cloud and edges based on service topology. AWS Step
Function [18] is able to build distributed applications using
visual workflows. These frameworks are flexible to support the
function composition within a single application, but they re-
quire users to manually trigger the defined application and also
the cross-applications function composition is not possible.
To address these limitations, the function-based programming
model is introduced by many fog computing frameworks, such
as Amazon Greengrass [5], Azure IoT Edge [4], and Baidu
OpenEdge [7]. They all trigger functions per edge based on
a topic-based pub/sub system. Opposed to that, our design
can automatically trigger functions for user-definable data
granularity based on the availability of their input data.

B. Serverless Computing

Serverless computing is emerging as a new paradigm for the
deployment of cloud applications. Many of the major cloud
vendors, including Amazon Lambda, Google Cloud Func-
tions, Microsoft Azure Functions, IBM Cloud Functions, have
released their serverless computing platforms. In addition,
there are also many open source serverless computing frame-
works, such as OpenWhisk, Kubeless, Fission, and OpenFaaS.
They are all designed for the cloud environment in which
computation resource and storage resource are unlimited and
centralized. Some studies address the cold start issue of func-
tion provisioning [19], [20]. On the other hand, as serverless
computing is applied into data-intensive applications [21],
[22], database [23], video analysis [24], the data management
and sharing between serverless tasks turns to be a bottleneck.
Pocket [25] proposes a fast storage system for ephemeral
data sharing between serverless tasks, yet it is still not able
to benefit from data locality since the management of data
and tasks is separated. Our design can manage data and
serverless tasks jointly to achieve better efficiency in more
geo-distributed and heterogeneous environments.

VII. CONCLUSION AND OUTLOOK

In this paper we take a first step into applying the serverless
concept into fog computing for data-intensive IoT services.
The goal is to keep the simplicity and flexibility of the
Function-as-a-Service programming model for fog computing
via an extended function programming model called Fog
Function, meanwhile improving the efficiency of existing
frameworks with two approaches: content-based discovery and
context-driven orchestration. The current approach is scalable
with hundreds of fog nodes, but it is necessary to decentralize

the discovery and orchestration for a much larger scale. Also,
in the future the context-driven orchestration mechanism can
be improved to provide predictable service level objectives
with some machine learning based approaches as proposed
in [26].
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