
Crowd-sourced BMS Point Matching and Metadata
Maintenance with Babel

Jonathan Fürst∗, Kaifei Chen†, Randy H. Katz† and Philippe Bonnet∗
∗IT University of Copenhagen, †UC Berkeley

jonf@itu.dk, {kaifei, randykatz}@berkeley.edu, phbo@itu.dk

Abstract—Cyber-physical applications, deployed on top of
Building Management Systems (BMS), promise energy saving
and comfort improvement in non-residential buildings. Such
applications are so far mainly deployed as research prototypes.
The main roadblock to widespread adoption is the low quality
of BMS metadata. There is indeed a mismatch between (i)
the anecdotal nature of metadata for legacy BMS – they are
usually initialized when the BMS is commissioned and later
neglected–, and (ii) the imperious need for consistent and up-to-
date metadata for supporting building analytics or personalized
control systems. Such applications access sensors and actuators
through BMS metadata in form of point labels. The naming of
labels is however often inconsistent and incomplete. To tackle
this problem, we introduce Babel, a crowd-sourced approach
to the creation and maintenance of BMS metadata. In our
system, occupants provide physical and digital input in form
of actuations (e.g., the turning on/off a light) and readings (e.g.,
reading room temperature of a thermostat) to Babel. Babel then
matches this input to digital points in the BMS based on value
equality. We have implemented a prototype of our system in a
non-residential building. While our approach can not solve all
metadata problems, we show that it is able to match end-user
relevant points in a fast and precise manner.

I. INTRODUCTION

Non-residential buildings are a prime platform for novel
cyber-physical applications that can reduce energy consump-
tion and improve occupant comfort. Reducing energy con-
sumption in non-residential buildings is an important goal,
considering that these buildings account for ca. 19% of pri-
mary energy consumption in the U.S. [1]. Occupant comfort
is likewise important because we spend more than 90% of our
time inside buildings [2].

Around half of non-residential buildings are already in-
strumented with a Building Management System (BMS). A
BMS is a typically tightly coupled digital control and sensing
system that performs automation and management tasks for a
particular building (HVAC, lighting etc.) [1].

Lately, BMS have caught the interest of the Sensor Network
community. Previous groundwork has made BMS sensors and
actuators available to cyber-physical applications by abstract-
ing them to a common interface (e.g., [3]). Early cyber-
physical applications on top of BMS show great potential:
Erickson and Cerpa develop a system that allows users to
directly communicate their thermal preferences to the BMS,
leading to energy savings of 10% and increased personal
comfort [4]. Narayanaswamy et al. develop a system that
optimizes energy usage and comfort by detecting anomalies
in HVAC systems [5].

However, such cyber-physical applications are not yet de-
ployed beyond building-specific research experiments. The
problem is metadata. Traditionally, a BMS is commissioned
and its functions are hardcoded to the specific characteristics
of a building and needs of a building manager. After commis-
sioning, the BMS becomes a legacy system and metadata is
largely irrelevant. Devices get replaced and added on a regular
basis while spaces get re-configured and change their use (e.g.,
a classroom is transformed into a lab). Metadata rarely follows
such evolution [6].

BMS metadata is usually restricted to a single label that
is set manually for each BMS point (e.g., a single sensor or
actuator). Specific commissioning contractors are responsible
for defining names for these BMS labels. Common naming
practices rely on the use of abbreviations for describing build-
ing component keywords (e.g., from the HVAC, Lighting do-
main) and for specifying the location (building, room names).
These encodings are not defined by a well-formed namespace.
They are not easily parsable, even for humans. Here are some
exemplary problems that we found while analyzing the BMS
labels in three of our campus buildings:

• No strict naming scheme within a single building.
E.g., WS86007.RELAY12 and SDH.PXCM-08SDH.
S5-04:ROOM TEMP represents a light switch and the
room temperature of a thermostat at the same location.

• Different labels for the same semantic meaning (RM
and ROOM, TEMP and TMP, STPT and SP). E.g.,
SDH.CP.RESET.TMP.SP.MIN and SDH.CAC-3:
ROOMTEMP use different labels for temperature sensors.

• Incomplete metadata due to the restriction to point labels
as data structure. For example WS86007.RELAY12
completely misses information about the location of the
light switch.

Inconsistent BMS metadata has been studied before (see
Section II for an overview). What distinguishes our approach
from previous work is that (i) we apply crowd-sourcing,
relying on the building occupants, (ii) we consider both,
actuators and sensors while (iii) we provide points with a
mapping to their physical location. Our hypothesis is that much
of the physical state of a building can be observed by humans
and that building metadata maintenance should be based on
human input.

In our system, Babel, occupants provide physical and digital
input in form of actuations (e.g., the switching of a light)

and readings (e.g., the reading of the room temperature of a
thermostat). Babel then matches user input to points in the
BMS by comparing point values to user provided input. For
example, if the user notifies Babel that the temperature is 67oF,
we are able to reduce the qualifying points to all points with
value 67. By further iterative refinement of crowd-sourced
data (a user reports another value for the same temperature
point), we can reduce the qualifying points eventually to a
single match. Our intention is to enable occupants to set up
the metadata for their own office space by providing input
to Babel. After performing this setup process, they are then
able to use a personal comfort application, e.g., on their
smartphone. We consider BMS metadata maintenance as a
good fit for crowd-sourcing for the following reasons:

• BMS metadata maintenance is parallelizable (there can
be several parallel user inputs) and serializable (the order
of user inputs does not matter).

• Many application relevant BMS points are visible to
humans (e.g., thermostat setpoint, light state) and the user
effort to report their state is small.

• It can be partitioned (e.g., metadata maintenance in one
office is independent from maintenance in another).

• The introduction of our system can improve building
operation and allow personal comfort applications. This
helps to incentivize people to participate.

The core contribution of our work is the design and imple-
mentation of Babel, a system that allows for a incremental,
crowd-sourced construction and maintenance of BMS meta-
data. We implement and evaluate Babel on an actual non-
residential building in the U.S. to show the applicability,
performance and accuracy of our system. To our knowledge,
this is the first work that applies crowd-sourcing to the problem
of inconsistent and incomplete BMS metadata.

The remainder of this paper is structured as follows: First,
we present related work. We then follow with our design
goals and the design of our system. Finally, we presents
our deployment and evaluation in a non-residential building,
concluded with an outlook on future work.

II. RELATED WORK

Metadata population has been covered extensively for dif-
ferent content. For text, automated metadata generation has
been done in various ways, e.g. through natural language
processing [7]. Yang and Lee propose a machine learning
approach to automatically generate metadata for the semantic
web from the content of webpages. Rodriguez et al. use
associate networks to transfer metadata from metadata-rich
resources to metadata-poor resources. They evaluate their
system using a bibliographic dataset [8].

Semi-automated, crowd-sourced metadata generation is very
successful in the so-called folksonomies using e.g., community
based tagging, where users tag a typically small fraction of
documents [9]. An example is the tagging of YouTube videos.
Projects like OpenStreetMap go further by collaboratively
creating a free editable map of the world that has become
comparable if not superior in quality than geo-data from

commercial providers [10]. In the building domain, Rice and
Woodman have successfully applied the concept of crowd-
sourced construction of world models. They present a system
that allows occupants to map the inside of a building [11].

In the sensor network community, Bhattacharya et al. pro-
poses a system where sensor metadata is semi-automatically
completed using regular expressions to detect common pat-
terns in metadata descriptors using the expertise input of
the building manager [12]. They achieve a correct matching
of 70% of data points using relatively few manual sample
matches. But they note that many labels have a very low
frequency, making it very hard to qualify them automatically.
Hong et al. apply spatial clustering to classify relative sensor
locations with some initial success for 5 rooms and 15 sensors
[13]. Finally, Schumann et al. present an approach for the
semi-automated mapping of BMS and Energy Management
System (EMS) labels. They propose semantic techniques for
computing similarity values between BMS and EMS labels.
These similarity values are subsequently used to reduce the
number of points a user needs to consider when he/she matches
labels manually. However they conclude that their approach
only identifies the correct match in 16% of all cases and hence
is not fit for automated labeling.

To solve the metadata problem in the first place, several
long-term efforts to standardize naming exist. Most notable the
ISO Industry Foundation Classes (IFC) [15], the open source
initiative Project Haystack [16] and ISO 16484-3:2005 [17].
These standards are commonly not adhered to by building
constructors and commissioners. Furthermore, a study recently
came to the conclusion that none of these metadata schemes
fully captures to model a building’s sensors and actuators and
their relationships [18].

III. DESIGN GOALS

We aim to solve the problem of inconsistent and incomplete
BMS metadata through crowd-sourcing. Our design goals are
the following:

• Global namespace. A global metadata namespace en-
ables portable applications across different buildings. Our
system should therefore map the current, loose namespace
of a building to a global one.

• Limited user involvement. To achieve a wide adoption
of a crowd-sourced system, user involvement should be
limited. Our system should ideally rely on a localization
system, so the location of the user can be automatically
selected and she does not need to manually input it. Fur-
ther, Babel should allow for the introduction of a reward
system in terms of a salary bonus or internal competition.
It should be possible to give users an immediate incentive
by e.g., enabling a personal comfort application for them
after points have been matched for their office.

• Backward compatibility. Buildings have long life-cycles
of 50-70 years. This means that our system needs to
be able to work with existing BMS and their charac-
teristics (e.g., slow and unreliable data-polling). More
recent buildings contain mostly one of the wider used,

Component
Lexicon

BMS

Babel
Frontend

Babel
Backend

Historical
Data &

Structural Building
Model

Babel
App

Fig. 1. Babel Architecture

standardized protocols like BACnet, KNX or LONWorks.
Many open source and research projects have made it
possible to integrate these (e.g., [3]). Our system should
build on top of this work. Due to the slow data polling
rate of BMS, our system should rely on asynchronous
requests where possible.

• Robustness. Resulting matches and metadata need to be
robust in regards to the human factor. We generally trust
the users of our system. We assume that a user will not
sabotage our system by providing wrong input. Users will
be affiliated to the building as employees or students,
which makes this assumption reasonable. Further, in a
real deployment, countermeasures against faulty input
can be the requirement of n correct matches for a point
instead of 1 and to distinct between trustworthy and less
trustworthy users. However, our system should handle
small imperfection and imprecisions in the user input.
For example, a user might report 64oF, while the actual
value is 64.3oF, or she might report an observation with
some delay to Babel.

• Dynamicity. To achieve dynamic metadata, our system
should be able to verify its metadata at defined time-
intervals. The time-interval depends on the requirement
of the specific building.

In the following we describe our system design and imple-
mentation based on these design goals.

IV. SYSTEM DESIGN

Figure 1 depicts the general architecture of Babel. A smart-
phone application accesses a Web service in the cloud that
contains a lexicon for different device types and points (e.g.,
a light on/off switch, a thermostat temperature point). The
same lexicon is used across all buildings to enforce a global
namespace. The smartphone application can further access
the local Babel service. It provides (i) the specific, structural
model of the building, adhering to a global naming scheme
and (ii) an entry point for users to report new values from the
physical world. When a user reports a value, it is compared
against the current values in the BMS in order to find a match.
The matching state is stored in a local database.

A. Metadata Model

Our system requires a data model that is able to represent the
different BMS points and respective locations, while allowing

S5-04:ROOM
TEMP

{
 "@context": "http://project-

haystack.org/tags”,
 "@type": "Sensor",

 "@id": "http://berkeley.edu/sdh/
5/4/sensors/temperature/

2016ba74…”,
 "@siteRef": "http://berkeley.edu/

sdh”,
 "@roomRef": "http://berkeley.edu/

sdh/5/4”,
 "kind": "Temperature",

 "unit": "F",
}

Context
via user

input

Babel
Matching

Physical
Points

Configuratio
n, Physical

Wiring etc…

Global Namespace

Fig. 2. Mapping the loose BMS Namespace to a Global Namespace

to integrate elements outside of the building domain. A cyber-
physical application might for instance retrieve local weather
information to adjust the HVAC setpoints.

We follow Curry et al. [19] and apply the Linked Data
approach to the building domain, solving interoperability is-
sues not only inside that domain, but also with other systems
in general. The Resource Description Framework (RDF) is
the standard model of the W3C for Linked Data exchange
on the Web [20]. RDF has several standardized serializations
formats like XML or JSON. In Babel we use JSON-LD (http:
//www.w3.org/TR/json-ld/) to model the structure of a building
and its different components as Linked Data. We principally
follow the naming scheme from Project Haystack, which
encompasses many points from the BMS domain (e.g., tem-
perature, humidity and CO2 sensors and thermostat setpoints).
Points that are not defined in Haystack are included by linking
to other naming schemes (e.g., https://schema.org). Figure 2
shows by means of an example how the loose, existing
namespace of BMS points is mapped to a global namespace
by relying on user provided context. Sensors and actuators
make up a majority of BMS points. They are physically wired
to a controller, which connects to the BMS backend. Physical
sensor and actuator states are then perceived by occupants
and serve as parameter for Babel’s point matching process.
Matches are thus constructed incrementally over time and
change as the building changes. This might be the case when
the physical points change because part of the HVAC system
gets replaced. In the example, a temperature sensor is mapped
to a global namespace using the Haystack scheme.

B. Namespace Mapping and Point Matching

To match a single BMS point, we distinguish it from the
set of all points through iterative refinement and enrich it with
metadata. This is achieved by the simplified matching process
seen in Figure 3. We need to eliminate other, unpredictable
datapoint changes that might happen during an unfinished
matching process. When receiving a new user input, Babel
first reduces the points to consider for this request. It removes
already successful matches and points whose “BACnet type”
value does not fit the type of the point that should be matched.1

Then it queries the remaining points and compares their value
with the user provided value. A substantially reduced list of
points is the result. This process is repeated when user input

1The BACnet standard defines 54 point types (e.g., Binary Input, Binary
Output, Analog Input etc.) [21].

len(matches)
== 1

Start

Matches exist?

points = previous
matches

points = all
qualifying points

matches = all
points equal user

input

Done with
single match

len(matches)
== 1

Store matches in
DB for more

iterations

Done with
len(matches)

> 1

YES NO

NOYES

YES

NO

Fig. 3. Babel Matching Process to Distinguish a Single Point.

for the same point is provided again until a single point is
left. The point is enriched with metadata in the form of (i)
the user selected location and (ii) information from the global
component lexicon.

C. Implementation and Deployment

We use one of our campus buildings for implementation
and deployment. The 141,000 s.f. 7-story facility contains
mainly research spaces and classrooms. The building’s BMS
is connected to a PC which runs sMAP [3]. We implement a
driver for sMAP that runs locally. Our driver uses pyBACnet to
query the BMS and spawns a Web service for communicating
with the main Babel component.

The main component (written in Go) offers a REST in-
terface for smartphone clients. Most times the driver is idle.
When Babel receives user input by a client, it dynamically
creates a list of BACnet points that come into question for
the user’s input and fires up our driver with these points.
This reduced list of points is based on BACnet type values
and previously matched points. If the point is already part of
an ongoing matching process, we continue the process with
the already narrowed down points. We implement an Android
smartphone client for Babel that connects to a structural model
in the form of rooms and a lexicon of point descriptors fol-
lowing the Project Haystack naming convention and modeled
in JSON-LD. A user of our app is able to select her location
in the building and the type of point she wants to report (e.g.,
a light switch). She then only inputs the observed state (e.g.,
on).

V. EXPERIMENTAL RESULTS

We evaluate our system with various micro- and macro-
benchmarks. In the following, we present our experimental
evaluation on our deployment building. The building is oper-
ated by Siemens Apogee, a proprietary BMS by Siemens. It
provides a virtual BACnet interface that we interact with.

We scan for BACnet points on the building using pyBACnet.
Our scan result shows that the building contains 7053 points.
By observing the point names manually, we find that 365 of
these points are part of the lighting system, while 6688 belong
to HVAC. Analog Output and Binary Output points make for
87% of all points.

21-06 21-12 21-18 22-00 22-06 22-12 22-18
Time (Day-Hour)

0
10

20
30

40
50

N
um

be
r o

f P
oi

nt
s

Temperature Point Cubicle
Temperature Point Room

Fig. 4. Matching Progress for Two Thermostat Temperatures

We then sample all BMS points at different times of the day
(9am, 1pm and 10pm) to be able to quantify how often the
same value is shared among points. When many points have
the same value, then a distinction based on the change of that
value might require substantial more steps. Our experiments
show that a value is shared on average among 4.8 other points.
Few values make out the majority for all points (1 and 0 make
up 42% of all points). The reason is that our system contains
relatively many binary switched lights (365) and that HVAC
systems use 1 and 0 to specify their heating and cooling mode.

A. Matching Process

We perform macro benchmarks for the point matching
process by physically visiting several thermostats and light
switches to perform user input to Babel over the period of
one week. Figure 4 shows the result of this process for two
thermostat temperature points. The points that need to be
considered by Babel reduce over time, dependent on user input
and the “grade of singularity” of that value. In depicted case,
we are able to reduce the possible points to 48 and 25 with
the first user input. In consecutive iterations, we only consider
the remaining points. As can be seen for the room temperature
(dashed line), the matching process might not be able to reduce
the points if either (i) all other possible points have the same
value or (ii) some of the points in the BMS do not respond to
reading requests.

Figure 5 shows the same experiment for a point that can
be directly influenced by users: a binary light switch. There
are 365 such points in our deployment building. In contrast to
the matching of the temperature setpoint, we can not reduce
the number of points as significantly in the first iteration. But
then we can observe the strength of our human-in-the-loop
approach. By physically switching a light and reporting the
new state we could always reduce to a single point during our
experiments (100 tries for 20 different points).

To quantify the performance of our system at a larger
scale, we have used historical data to simulate an ongoing
matching process. The measurements have a 10s granularity.
The dataset contains 463 different points. We use this data
to perform a point matching in 10 minute time intervals.
This means, that we assume that for all unmatched points,
every 10 minutes, a user inputs her observations into our
system. Figure 6 shows how the distribution of matched points
increases over time. The result is a match of all points after 12

47:30 48:00 48:30 49:00 49:30 50:00 50:30
Time (Minute:Second)

0
10

0
20

0
30

0

N
um

be
r o

f P
oi

nt
s

Light 460 (initially off)
Light 460 (initially on)

Fig. 5. Matching Progress for Two Light Switches

00:00 02:00 04:00 06:00 08:00 10:00 12:00
Time

0.6

0.7

0.8

0.9

1

Em
pi

ric
al

 C
D

F

Fig. 6. Cumulative Distribution (CDF) of Successful Matches

hours. One must note that this experiment does not fully model
a real deployment. First, this experiment does not contain any
user initiated actuation (e.g., light switch, thermostat setpoint
changes etc.) that will accelerate the matching process and
second, we perform a matching every 10 minutes, which is
not realistic for a real deployment. However, the results show
that our approach leads to a quick point mapping when users
participate sufficiently.

B. End-to-end Latency

We aim for an interactive system, where users get timely
feedback on the completion of a matching process. First, low
end-to-end latency can enable gamification as user incentive.
Second, it enables users to engage in a sequence of rapid
interactions (e.g., for lights). Letting users manually change
the value of a point through a sequence of interactions with
Babel can speed up the BMS metadata matching process.

The experienced end-to-end latency generally correlates
with the number of points that need to be queried. Querying
all 365 light points results in 5.9s of delay. The time reduces
to 4.8 and 3.4s for 237 and 95 points respectively. We found
the latency of the BMS the main dominating component for
our system and perform therefore micro-benchmarks on it
(see Figure 7). We are able to read a bulk of 3224 points
in 17.3s (10 tries). The query time does not always correlate
to the number of queried points. During our experiments, we
found that the query time heavily depends on the physical
BMS controller that connects the points. Sometimes querying
more points takes less time. E.g., the controller that polls the
2100 points is significantly faster than the controller polling
the 1100 points. Such unpredictability makes it challenging to
implement an interactive system on top of a BMS.

0 500 1000 1500 2000 2500 3000
Queried Points

0
2
4
6
8

10
12
14
16
18

Q
ue

ry
 T

im
e

in
 s

Fig. 7. BMS Query Latency

C. Accuracy

Accuracy is crucial for cyber-physical applications and to
overcome reservations by a building manager if a new, more
user centric system is installed. If we assume that the state
of physical readings by users does always correspond to the
digital state in the BMS, then by universal instantiation, this
must also be true for a single value that remains at the end:

∀xP (x) ⇒ P (a/x) (1)

This results in a 100% accuracy in an ideal system. However,
in a real implementation, we need to consider (i) accidental or
intentional wrong user input and (ii) that digital and physical
states are not perfectly aligned in time and value dimension.
Both can be dealt by building trust through multiple matches
by several users. We leave extensive experiments with real
occupants for future work, but we experienced that the phys-
ical state (e.g., of a light switch or temperature value) is not
always equal to the value in the BMS. A thermostat was only
able to display temperature as integer, while the value in the
BMS was a two decimal floating point number. As a result, we
convert values to integers, sacrificing some variance. We also
found that physical artifacts do not always correspond one-
to-one to BMS points. For instance we found a light switch
that corresponded to two points in the BMS. Another problem
occurs if BACnet points do not respond to reading requests.
If this happens, we might remove the correct point from our
list of possibilities. To avoid that, we keep points that do not
respond in our list of possible matches.

D. Lessons Learned

The insight we gained over the course of our design
and deployment towards the feasibility and performance of
our approach is threefold. First, using a BMS as basis for
user initiated interaction is feasible as our evaluation shows.
However, we often face technological barriers. The BACnet
read rate is limited. Considering that we are connecting to a
virtual BACnet interface, we suspect a native BACnet to be
even slower. Second, our approach has limitations when we
deal with points that can not be observed directly by humans.
The matching of internal setpoints (e.g., for the control flow
of the HVAC system) is out of scope in our work, as these
points are not directly relevant for many applications. Third,
our matching process is considerably slowed down by a loss
of variance due to different encodings of point values (e.g.,

on a thermostat display and on the BMS). We currently deal
with this problem by using the lowest common denominator
(e.g., convert to integer).

VI. CONCLUSION AND FUTURE WORK

In this work, we developed and implemented the con-
cept of crowd-sourced metadata maintenance through point
matching for non-residential buildings. Inconsistent metadata
in the building space is a problem that hinders the further
development of cyber-physical applications that are portable
across buildings. Inconsistent metadata is also a problem for
traditional building operations. The introduction of a ESM is
often expensive and requires manual work [14]. The traditional
building commissioning is transforming into a continuous and
iterative process that requires consistent metadata to stay cost-
effective [22].

Our approach of introducing a human-link between the
physical world and the digital point of a BMS works well
in the experiments performed in our building. The current
implementation is limited by the artifacts an occupant can ob-
serve, solving the most relevant metadata problems with regard
to end-user applications. In addition, traditional appliances in
residential homes are steadily replaced by smart appliances. It
is inevitable that these appliances will reach the non-residential
building market during the next years. This plethora of new
devices will be much more interactive for humans and align
itself well with our idea. Ultimately, we envision Babel as a
general approach to metadata maintenance in the context of
IoT.

Looking forward, we see several directions for future work.
The obvious next step is to deploy Babel with actual occupants
of a building to investigate to which extend our approach is an
acceptable effort. Further, gamification is an ideal candidate
for Babel. Ingress is a popular game (7 million players) by
Niantic Labs (Google) where the goal of players is to conquer
geographical areas in the real world by physically visiting
these places (https://www.ingress.com). Combining Ingress’s
approach with metadata maintenance appears to be promising.
Lastly, building commissioning is a process that often is only
completed once when the building is constructed. A commis-
sioning process that is driven by human input could propagate
a continuous commissioning process where occupants keep the
physical state of the building in sync with the digital.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation under grant CPS-1239552 (SDB).

REFERENCES

[1] U. E. P. Agency, “Building energy data book,” 2011.

[2] U.S. EPA/Office of Air and Radiation, “The inside story: A
guide to indoor air quality,,” 1988.

[3] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler,
“sMAP: a simple measurement and actuation profile for physical
information,” in SenSys’10. ACM, 2010.

[4] V. L. Erickson and A. E. Cerpa, “Thermovote: participatory
sensing for efficient building hvac conditioning,” in BuildSys’12.
ACM, 2012.

[5] B. Narayanaswamy, B. Balaji, R. Gupta, and Y. Agarwal, “Data
driven investigation of faults in hvac systems with model, cluster
and compare,” in BuildSys’14. ACM, 2014.

[6] T. Haasl and T. Sharp, A practical guide for commissioning
existing buildings. Oak Ridge National Laboratory, 1999.

[7] H.-C. Yang and C.-H. Lee, “Automatic metadata generation
forweb pages using a text mining approach,” in WIRI’05. IEEE,
2005.

[8] M. Rodriguez, J. Bollen, and H. Sompel, “Automatic metadata
generation using associative networks,” TOIS’09, 2009.

[9] A. Mathes, “Folksonomies-cooperative classification and com-
munication through shared metadata,” 2004.

[10] P. Neis, D. Zielstra, and A. Zipf, “The street network evolution
of crowdsourced maps: Openstreetmap in germany 2007–2011,”
Future Internet, vol. 4, no. 1, pp. 1–21, 2011.

[11] A. Rice and O. Woodman, “Crowd-sourcing world models with
openroommap,” in PERCOM’10. IEEE, 2010.

[12] A. Bhattacharya, D. Hong, D. Culler, J. Ortiz, K. White-
house, and E. Wu, “Automated metadata construction to support
portable building applications,” in BuildSys’15. ACM, 2015.

[13] D. Hong, J. Ortiz, K. Whitehouse, and D. Culler, “Towards Au-
tomatic Spatial Verification of Sensor Placement in Buildings,”
BuildSys’13, 2013.

[14] A. Schumann, J. Ploennigs, and B. Gorman, “Towards automat-
ing the deployment of energy saving approaches in buildings,”
in BuildSys’14. ACM, 2014.

[15] buildingSMART, “IFC Standard,” http://www.buildingsmart-
tech.org/specifications/ifc-overview, 2015.

[16] Project Haystack, http://project-haystack.org/, 2015.
[17] ISO, “ISO 16484-3:2005,” 2005.
[18] A. Bhattacharya, J. Ploennigs, and D. Culler, “Analyzing meta-

data schemas for buildings: The good, the bad, and the ugly,”
in BuildSys’15. ACM, 2015.

[19] E. Curry, J. O’Donnell, E. Corry, S. Hasan, M. Keane, and
S. O’Riain, “Linking building data in the cloud: Integrating
cross-domain building data using linked data,” Advanced En-
gineering Informatics, 2013.

[20] W3C, “Resource Description Framework (RDF),” http://www.
w3.org/RDF/, 2014.

[21] S. T. Bushby, “BACnet TM: a standard communication infras-
tructure for intelligent buildings,” Automation in Construction,
vol. 6, no. 5, pp. 529–540, 1997.

[22] E. Mills, The cost-effectiveness of commercial-buildings com-
missioning: A meta-analysis of energy and non-energy impacts
in existing buildings and new construction in the United States.
Lawrence Berkeley National Laboratory, 2004.

[23] J. Fürst, K. Chen, R. H. Katz, and P. Bonnet, “Demo abstract:
Human-in-the-loop bms point matching and metadata labeling
with babel,” in BuildSys’15. ACM, 2015.

