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Abstract
Radio frequency (RF) signals have been used extensively
to enable (indoor) localization and proximity detection based
on Received Signal Strength Indication (RSSI). However,
localization systems often suffer from large data collection
and calibration overhead, especially when being deployed
in a new environment. RSSI fingerprinting based localiza-
tion systems require the construction of a fingerprinting
database. This localization data acquisition is a hindrance
for the proliferation of localization systems in practice. Sim-
ilarly, RSSI proximity applications require an RSSI calibra-
tion for the receiver hardware and the deployment environ-
ment. To overcome these problems, we propose the usage
of visual 3D models which enable 6DOF localization and
distance measurement with high accuracy. We then fuse
this physical knowledge with RF data: (1) for automated ac-
quisition of fingerprinting data and (2) easy calibration of a
RF propagation model for proximity estimation.
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Introduction
In mobile computing, radio frequency (RF) signals have
been used extensively to enable (indoor) localization and
proximity detection. RF signals fade in space, while the ex-
tend of signal fading is influenced by the physical character-
istics of the space. As such, RSSI measured at the receiver
is a proxy for transmitter-receiver distance. Specifically, two
common approaches make use of this RF signal fading be-
havior: (1) RSSI fingerprinting based localization and (2)
RSSI based proximity estimation [10].

RSSI fingerprinting faces the problem that RSSI values
need to be mapped to specific locations. Because the RF
signal characteristics heavily depend on environment and
transmitter/receiver characteristics, an explicit/implicit data
acquisition, site-survey is required to build the initial fin-
gerprinting database. Likewise, for RSSI based proximity
estimation, a calibration to the deployment environment and
transmitter/receiver characteristics is required to obtain ac-
curate distance estimations (details in the following section).

In this work, we propose to apply physical knowledge ob-
tained from a 3D model (i.e., user location and transmitter-
receiver distance) to address such problems. Specifically,
we apply image localization in a visual 3D model to au-
tomate wireless localization data acquisition and cali-
bration. Towards this goal, we first combine vision based
localization with RSSI fingerprinting, by proposing a new
technique for simple, explicit crowd-sourcing that (1) re-
duces the user effort, while (2) increasing the quality of the
site survey data. We achieve this by combining the RSSI
data collection with 6DOF (Degree of Freedom) image lo-
calization against a 3D model. Our image localization re-
moves the need for a manual location tagging by users and
provides high localization accuracy. Second, we show how
distance metrics obtained from a 3D model can also be

used to automatically calibrate RSSI based proximity appli-
cations.

We perform an experimental evaluations for both applica-
tion scenarios: (a) with an indoor localization system that
uses Bluetooth Low Energy (BLE) fingerprinting and (b)
with a BLE proximity application that determines beacon-
phone distances based on RSSIs of BLE advertisements.

Note that pure image localization is accurate, but not as
ubiquitous as our approach of vision supported RSSI based
localization. Image localization is resource intensive [7], it
can violate people’s privacy requirements, and it requires
explicit user involvement (i.e., camera actuation). On the
other hand, RSSI based localization (proximity estimation)
has advantages for privacy, latency, computational require-
ments and mobile battery consumption [14].

Our preliminary results show that image localization pro-
vides precise results (mean standard deviation at all loca-
tions: 5 cm) and accurate distance estimation (mean error:
33 cm) to automate localization data acquisition and cali-
bration. For RSSI fingerprinting, we show how image local-
ization can be used to construct a fingerprinting database
that can exclusively be used for lightweight localization.
Further, we show that we can improve RSSI based prox-
imity estimation error from 3.3m to 1.7m by using image
localization to calibrate an RF signal propagation model to
the specific phone and environment. These results open
new avenues for crowd-sourced localization data acqui-
sition and calibration approaches that now may build on
Augmented Reality (AR) based interactions, such as smart
appliance control [7] to recruit participants.



Challenges of RF Based Localization
This section discusses the challenges that RF based local-
ization, such as RSSI fingerprinting and proximity estima-
tion face to motivate our approach.

RSSI Fingerprinting
RSSI fingerprinting usually follows two phases: (1) In the
offline site survey phase, RSSI values of transmitters (i.e.,
WiFi access points, Bluetooth Beacons) are densely sur-
veyed at known locations and stored in a database; (2) In
the online phase, users of the localization system sample
RSSI values with their devices and the system compares
user-sampled RSSI values with the values in the survey
database according to some similarity metric (e.g., Eu-
clidean distance [4]).

It becomes clear that the site survey phase is a hindrance
to a fast adoption of such systems. As such, several works
try to reduce the involved efforts, mainly through explicit
and implicit crowdsourcing. In explicit crowdsourcing, users
are requested to collect RSSI data at unexplored locations,
e.g., using their mobile devices [20]. Explicit crowdsourcing
often suffers from poor quality of user input and difficulties
to recruit participants [10]. In implicit crowdsourcing, RSSI
data is collected on user’s devices without manual user in-
tervention, e.g., in [25, 21] the authors propose effortless
RSSI fingerprinting based indoor localization by combining
an indoor floor map with RSSI and inertial data sampling
with a particle filter. However, Yang et al. [25] note that lo-
calization accuracy for implicit crowdsourcing systems are
lower than a traditional site survey based systems, while
system complexity increases because of the required signal
processing (e.g., noise reduction with filtering). Summa-
rized, RSSI fingerprinting faces the following challenges:

C1 Slow adoption due to offline phase.

C2 Inaccurate user input for explicit crowdsourcing.

Proximity Estimation
RSSI based proximity estimation relies on signal fading
properties to estimate proximity based on received signal
strength. However, this proximity estimation is heavily in-
fluenced by environmental factors, like obstacles, multipath
effects, channel fading or wireless interference. Thus, for-
mulae for proximity estimation are usually based on both
physical RF signal propagation (e.g., Friis transmission
equation) and heuristics obtained experimentally to fit dif-
ferent physical environments and hardware.
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Figure 1: Hardware heterogeneity problem. Different smartphone
models exhibit greatly different RSSI measurements.

Figure 1 shows the variances in the RSSI values in the lab
environment for different distances and from different phone
models. RSSI varies by 20 dBm between models at the
same distance. As such, RSSI based proximity estimation
faces the following main challenge:

C3 The high hardware and environment dependency re-
quires a calibration of the signal propagation model to
the deployment environment.

In the following, we show how 6DOF image localization can
help localization systems to overcome these challenges.



Localization Data Acquisition and Calibration with
6DOF Image Localization
Figure 2 depicts the general working of our approach. Dur-
ing an offline phase, a visual 3D model is constructed us-
ing a RGB-D camera. Note, that such model might also
be constructed through crowd-sourcing as in [9] to reduce
efforts. Mobile phone users collect RSSI values from the
surrounding wireless transmitters (e.g., WiFi access points
or Bluetooth beacons). The users provide RSSI values and
the images taken from their mobile phone camera. We then
localize the images in the visual 3D model, which gives us
the mobile phone location of the user in the physical space.
For fingerprinting, a measurement contains the RSSI values
of the transmitters by the mobile device, the mobile device
model, and the location of the user. The measurement is
then saved to the database. After a measurement has been
stored, subsequent users of our system can use a purely
RSSI fingerprinting based localization approach that does
not require any more images to be taken. For RSSI proxim-
ity estimation, we obtain transmitter-receiver distances from
the 3D model to calibrate the RF propagation model to the
phone hardware and environment.

6DOF Image Localization
Vision based localization localizes camera images in an
existing 3D model. To infer the location of a query image, it
localizes the query image in the 3D model using the most
likely location (3DOF) and angle (3DOF) [24].

To localize an image, we build a 3D model, which is essen-
tially a set of 3D points (a.k.a., a point cloud). Some points
in the 3D model are associated with a visual feature (e.g.,
SIFT [16], SURF [5]) that describes the appearance around
it. We find the most similar visual features in the 3D model
from those extracted in the image, and compute the geome-
try relation among them to get the 6DOF the image [24].
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Figure 2: 3D Model Supported RSSI Fingerprinting and Proximity
Estimation. We construct a 3D model using a RGB-D camera and
subsequently use this model for RF localization data acquisition
and calibration by combining image localization with RSSI
sampling on end-user devices.

In this paper, we use RTAB-Map [12] to build the 3D model,
and use SnapLink [7] for image localization. As an example,
Figure 3 shows a 3D model and two images localized at the
location and orientation where they were taken in the real
world.

Interpretation of 3D Model and 6DOF Locations
Image localization allows us to estimate location in the form
of 3D coordinates in a 3D model. However, applications that
use the localization services still need to know how to inter-
pret these coordinates in the context of the corresponding
3D model. Fortunately, 3D point clouds are easy to label
by humans [11], and many algorithms can be used to un-
derstand semantics in 3D point cloud automatically. For
example, we can perform scene understanding on the point
cloud [3], such as detecting doors, obstacles, and path-
way for indoor navigation. We can also perform 3D registra-
tion [23] to combine room 3D models together to form a 3D
model of the building, which allows localization applications
to operate at the scale of a building.



Figure 3: An example from our deployment, showing two images
localized in a 3D model. Each image has its own coordinate
system, which is annotated in the figure.

Prototype and Experiment Design
We implement a prototype of our system and deploy it in
a shared office space with two rooms (see Figure 4). In
total we deploy 5 Estimote Bluetooth beacons [1] in the
corners of the rooms at around 1.5m height (B1-B5). We
then collect a visual 3D model with a Microsoft Kinect, using
RTAB-Map [12]. We use a Nexus 5x Android phone to col-
lect pictures and RSSI samples at six locations in the rooms
(L1-L6). Further, we re-collect RSSI samples for 7 days to
evaluate the stability of our approach.

For RSSI fingerprinting, we implement a simple Euclidean
distance based approach following the system outlined
in [6]. Specifically, to localize a device, we match the sam-
pled RSSI values to the closest set of RSSI values stored in
the fingerprinting database. We use the median of sampled
RSSI values to remove outliers. Note, because our system
is intended to be used with off-the-shelf mobile devices, we
use RSSI instead of more stable channel state information
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Figure 4: Experimental setup for fingerprinting experiments. We
deploy 5 beacons (B1-B5) and collect RSSI fingerprints for 6
locations (L1-L6) in two rooms.

(CSI) [26] for fingerprinting.

For RSSI proximity estimation, we use the commonly used
log-distance path loss model [8] given by the following
equation,

d = 10(
Ptx−Prx

10∗γ ) (1)

where d is the estimated distance between phone and
transmitter, γ is the path loss component, which deter-
mines the rate of decay of the RSSI values when mov-
ing away from the transmitter, Prx is the received signal
strength, and Ptx is the signal strength at 1m. As such, γ
captures the effects of the environment (e.g., obstacles in
line of sight result in faster decay), whereas Ptx captures
hardware effects on transmitter and receiver side (SoC im-
plementation, amplifier and antenna). We then calibrate γ
and Ptx through image localization in the 3D model. I.e.,
we obtain two distances d0 and d1 from the 3D model and



solve Equation 1 for both unknown variables. Note that due
to variations in signal propagation in indoor environments
(multipath, obstacles), there exists no single solution that
perfectly solves Equation 1 for multiple distances. We there-
fore minimize the mean square error for multiple distances
as shown in Equation 2 and 3.

erri =10
(
Ptx−Pirx

10∗γi
) − di (2)

errtotal =

n∑
i=0

err2i (3)

Evaluation
To evaluate our approach, we first perform experiments to
gain an understanding for the localization accuracy that we
can obtain with the visual 3D model (offline phase). We
then separately evaluate the resulting RSSI fingerprinting
based localization and RSSI based proximity estimation
(online phase).

Visual Image Localization
To estimate the localization error using the visual 3D model,
we collect 50 images at the same location but having differ-
ent angles. We do this for all six locations (L1-L6) marked in
Figure 4. We then use SnapLink [7] to localize the images
in the 3D model. Figure 5 shows the result of this experi-
ment by depicting x, y and z coordinates for each location.
Note that this data is based on multiple 3D models. Loca-
tions with similar coordinates are not necessarily physically
close to each other. Out of 313 images, only 16 (5%) fail to
be localized due to noise in the images and 3D model and
the thresholds we set in the system, which is not uncom-
mon in state-of-the-art image localization systems [24].

For 95% of the images, image localization achieves highly
accurate results (we empirically verify the results in the 3D
model as shown in Figure 3). These successfully localized

images exhibit only a small standard deviation (SD): xSD

= 4.3 cm, ySD = 4.7 cm, zSD = 4.6 cm. Overall, our results
show that image localization provides high accuracy and it
can be used as the near-ground-truth input for RF based
localization systems.

RSSI Fingerprinting Localization
We collect RSSI samples at locations (L1-L6) over the time
frame of a week (10 different dates and times). We then
use the initial collection of RSSI data as training data to
build a fingerprinting database where we store the median
RSSI value for each location. Then, we test our system with
the remaining 9 data sets. Figure 6 depicts the cumulative
distribution function (CDF) of the localization errors for all
locations together, while Figure 7 shows results for each lo-
cation separately. We can localize most collected samples
correctly (75%). As expected, due to the close proximity of
some locations (e.g., < 2m for L3 and L4) and changes in
time in RF signal propagation (e.g., due to human activity,
WiFi traffic), some localization attempts result in wrong lo-
cations. Likewise, due to specifics of the environment (see
Figure 4), L1 and L5 provide near perfect localization re-
sults.

RSSI based Proximity Estimation
To evaluate vision based RSSI calibration, we place a sin-
gle BLE beacon in a larger conference room at the height of
1.5m and then build a 3D model using RTAB-Map [12]. We
manually select the beacon location in the 3D model using
the labeling tool developed in [7]. We collect RSSI data at
five transmitter-receiver distances (1m, 3m , 5m, 7m and
10m) and with multiple phone models, together with images
captured by the smartphone camera. We use the 3D model
to localize the captured images and calculate the beacon-
camera distances. Figure 9 depicts the visual distance error
for different camera-beacon distances based on 20 images
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Figure 5: Visual localization results for the successfully localized images at different locations (L1-L5). x, y and z are coordinates in 3D space.
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Figure 6: CDF of Overall Localization Errors.

per location. Note that we omit results for 1m, because im-
age localization does not work reliable due to our specific
deployment environment (the beacon is placed on the wall
and images captured at 1m distance do not contain enough
SURF [5] features for reliable localization). Overall, we de-
rive accurate distance estimations from the 3D model for
the remaining locations (mean error: 33 cm).

We then use the collected RSSI data at two locations (P0rx ,
P1rx ) and the distances d0 and d1 obtained from the 3D
model for these locations to minimize the overall error in
Equation 3 for a (γ, Ptx) pair. We use the Nelder-Mead al-
gorithm [17] to solve this multidimensional unconstrained
optimization problem. We use a single set of RSSI val-
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Figure 7: Mean Localization Error for each location.

ues for this calibration phase and test our approach with
solely RSSI data collected in a consecutive sampling iter-
ation. Figure 8 depicts (top), the generic proximity estima-
tion results (using the Ptx, as advertised by the beacon
(−74 dBm), and an environment factor γ = 1.7, based
on empirical data for non-residential buildings published
in [22]) and (bottom), the results after calibration to phone
model and environment through image localization in the
3D model using d0 = 7m and d1 = 10m. The generic
model fails to capture phone model and environment char-
acteristics (root mean square error: 3.3m), while the cali-
brated model captures device and environment characteris-
tics better (root mean square error: 1.7m). However, 1.7m
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Figure 8: RSSI Based Proximity Estimation using a Generic (top)
and a Calibrated (bottom) RF Signal Propagation Model.

error also shows that the calibrated propagation model is
still prone to errors due to multipath effects and other signal
interference (e.g., at 1m, the calibrated model has larger
errors for most phones). We suspect that this error could be
reduced by creating a more accurate model that includes
additional environmental factors (e.g., obstacles, other
transmitters) and calibration data at additional distances.3 5 7 10
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Figure 9: Distance Estimation
Error from Image Localization.
Images captured at 5m exhibit the
smallest error, because our
deployment environment contains
a projector-table at this location,
which provided many additional
visual features.

Discussion and Future Work
Our evaluation show the potential of using image localiza-
tion to support wireless localization data acquisition and
calibration. We can explore this combination in several di-
rections. Because the 3D model contains the full geome-
try (i.e., room sizes, walls, furniture etc.), it is possible to
utilize this information to build a more accurate RF prop-
agation model for localization applications. We consider
employing crowdsourcing, together with the structure from
motion (SfM) to build the model from pictures without depth
information as in [2]. This would remove the current one-

time effort of 3D reconstruction using a RGB-D camera
and allow us to update the model to environment changes
as in [9]. However, it would also result in a sparser point
cloud. Another option is to deploy fiducial markers (e.g.,
AprilTag [19]) that allow a camera to directly localize itself in
space without requiring a 3D model.

Related Work
Liu et al. [15] present a visual approach to fingerprint map
creation, combining WiFi data with video frames and inertial
readings. Levchev et al. [13] design an end-to-end system
for simultaneous WiFi fingerprinting and mapping using
a customized sensor selection (camera, laser scanners,
IMU). They show that fusing camera with RF data improves
localization accuracy in some cases. Noreikis et al. [18]
show that combining 3D model based image localization
with inertial smartphone sensors greatly improves energy
consumption for context-aware localization task schedul-
ing. Our approach assumes the existence of an indoor 3D
model (or fiducial markers) to be used as reference points
to calibrate RSSI measurements and the resulting localiza-
tion applications.

Conclusion
In this paper, we proposed to use image localization in 3D
model to automate data collection and calibration in RSSI-
based indoor localization systems. Image localization can-
not be used in daily activities in shared environment be-
cause of privacy concern and its heavy energy overhead.
However, using it can eliminate human efforts in the data
acquisition and calibration phases of other indoor localiza-
tion systems. Our evaluation showed that image localization
can be performed fully automatically and can provide ac-
curate ground truth locations. We believe our work will be
another stepping stone for large deployment of various in-
door localization algorithms in the future.
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