

AAAI-20 Workshop on Artificial Intelligence of Things

In conjunction with the 34th AAAI Conference on Artificial Intelligence

February 7th, 2020 New York - New York, USA

APPLYING WEAK SUPERVISION TO MOBILE SENSOR DATA: EXPERIENCES WITH TRANSPORT MODE DETECTION

JONATHAN FÜRST¹, **MAURICIO FADEL ARGERICH**¹, KALYANARAMAN SHANKARI², GÜRKAN SOLMAZ¹, **BIN CHENG**¹

IONATHAN, FUERST@NECLAB, EU, MAURICIO, FADEL@NECLAB, EU, BIN, CHENG@NECLAB, EU

¹NEC LABS EUROPE, ²UC BERKELEY

AGENDA

- ML in IoT
- Our domain
- Transport Mode Detection
- Weak Supervision for Transport Mode Detection
- Evaluation & Results
- Takeaways & Future work

ML IN IOT

- loT is expanding to new domains
- ML is essential to exploit the power of IoT
- Challenges
 - Location
 - Time
 - Data Quality
- Labeled data is very expensive

But, we can label data using noisy programmable functions that express external knowledge, and then re-train our model

OUR DOMAIN: TRANSPORT

- The city of Heidelberg wants to improve public transportation
- They need insights about how people move in the city
- Our solution was to create a mobile app
 - Citizens get transport recommendations
 - City gets an aggregated view of transportation
- We need to know
 - Location of users (start, trajectory and end point) → TGGPS
 - Transport mode of user → Manually labeled?

TRANSPORT MODE DETECTION

- Transport mode detection is fundamental to optimize urban multimodal human mobility
- It requires two steps:
 - I. Segmentation
 - Classification
- Current studies have used GPS, accelerometer, barometer and GIS data to train supervised ML models
 - Data has to be labeled manually
 Data is labeled semi-automatically
 - Training sets are small (guess why) and then model is overfitted → Training set can be much larger, less overfitting
 - Data quality vs. battery and OS limitations The more the data, the less data quality needed

Our take: improve data availability using weak supervision

WEAK SUPERVISION FOR TRANSPORT MODE DETECTION

MOBILE SENSOR DATA COLLECTION

- Collecting data from mobile sensors drain a lot of battery
 - Sensing location using GPS
 - Accelerometer and barometer → high frequency
- Instead, we use Android and iOS native APIs (Location and Activity)
 - Highly optimized for battery consumption
 - BUT, sparse and noisy sensor data

TIME SERIES SEGMENTATION

location activity

- I. Filter and re-sample data
 - Sparsity
 - Location and activity data are not aligned
 - No fixed sampled interval
- 2. Segment time series into Trips
 - Dwell time heuristics
- 3. Segment Trips into Segments
 - Walk-point-based

LABELING, TRAINING AND CLASSIFICATION

- We use Data Programming (Ratner et al. 2017)
- Labeling functions
 - Programmable functions
 - Use external knowledge
 - Cast a (noisy) vote on each data point
- Votes create a Labeling Matrix (LM)
- LM + lab. propensity + accuracy + correlation = Generative Model
- We label data points with generative model and use data to train an end model

"if the maximum speed of a segment is less than 3 m/s, then it's probably a walking segment"

"instead, if it's higher than 3 m/s but less than 10 m/s, then it's probably a bike segment"

EVALUATION & RESULTS (I)

- Our data
 - 8 users collected data for 4 months: 300k data points
 - Features
 - GPS location (through iOS and Android Location API)
 - Accelerometer based activity data (through Activity API)
 - Users partially labeled data using a visual labeling tool
 - 4 transport modes: walk, bike, car, train
 - Train/test split: 50/50
- We implemented 7 labeling functions using
 - Sensed speed
 - Velocity (calculated with GPS)
 - OpenStreetMaps (to check train stops)
- We tested the Generative Model accuracy with different sets of labeling functions

	Labeling Function	Classes	Coverage	Accuracy
(V)	LF_max_velocity	[0, 1, 2, 3]	100 %	72.1 %
(V)	LF_median_ velocity	[0, 1, 2, 3]	99.6 %	68.5 %
(A)	LF_motion_ activity	[0, 1, 2]	82.9 %	80.5 %
(V)	LF_std_velocity	[0, 1, 2, 3]	100 %	46.8 %
(OSM)	LF_osm	[3]	10.4 %	37.0 %
(S)	LF_median_ sensed_speed	[0, 1, 2, 3]	100 %	73.6 %
(S)	LF_quantile_ sensed_speed	[0]	65.7 %	78.3 %

EVALUATION & RESULTS (2)

- We label all the train data using the generative model and train a Random Forest and a Neural Network
- We also train a Random Forest using the manually labeled data from users

LESSONS LEARNT & FUTURE WORK

- Extensive manually labeling is not necessary for IoT data if we use external knowledge
 - Domain/Expert knowledge
 - Physical knowledge
- Access to external knowledge is not always easy
- Granularity in which IoT series should be labeled
- We will gather more data to continue the evaluation of our application in Heidelberg
- We will evaluate our approach with data from other cities, to test the generalizability

Thank you!

<u>mauricio.fadel@neclab.eu</u> <u>bin.cheng@neclab.eu</u> jonathan.fuerst@neclab.eu