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ABSTRACT

Influencing transportation demand can significantly reduce CO2 emissions. Individual user mobility
models are key to influencing demand at personal and structural levels. Constructing such models is
a challenging task that depends on a number of interdependent steps. Progress on this task is ham-
strung by the lack of high quality public datasets. We introduce MobilityNet: the first step towards a
common ground for multi-modal mobility research. MobilityNet solves the holistic evaluation, pri-
vacy preservation and fine grained ground truth problems through the use of artificial trips, control
phones, and repeated travel. It currently includes 1080 hours of data from both Android and iOS,
representing 16 different travel contexts and 4 different sensing configurations.

1 INTRODUCTION

The transportation sector accounts for about a quarter of energy-related CO2 emissions and decarbonization is chal-
lenging since it depends on changes at the individual consumer level (Rolnick et al., 2019). An accurate individual
mobility profile, constructed with minimal user input, can help influence both individual demand through incentiviza-
tion (Zhang et al., 2019) and infrastructure changes that overcome barriers to mode shift (Dill & McNeil, 2012).

There has been much work, both in academia and industry, on collecting and analyzing fine-grained individual loca-
tion traces, relying on user smartphones as sensing devices. However, the procedure to evaluate the performance of
these systems (e.g., accuracy/power trade-off) and the associated machine learning algorithms (e.g., transport mode
classification) has largely been an afterthought. There are few public datasets shared (see Table 1) and due to privacy
reasons, only two of them include location information. This is a problem, as reproducible evaluations on common
benchmark datasets (e.g. ImageNet; Deng et al., 2009) are critical to improve accuracy and generate robust solutions
on which policy makers can base decisions.

In this paper, we propose MobilityNet as a first step towards a common ground for multi-modal mobility research.
MobilityNet is comprised of: (i) a public, privacy non-sensitive, multi-modal mobility dataset, (ii) a data collection and
evaluation procedure to capture such datasets and (iii) a system that can be used to expand this dataset in the future by
collecting data in other regions. Our aim is to build a community of machine learning experts, transportation specialists
and smartphone sensing platform providers, who jointly improve data collection methods and the performance of
common transportation specific classification problems. We strongly believe that this will also ease the way for AI
experts from other domains to work on novel solutions that can contribute in the fight against climate change.

2 A PROCEDURE FOR EVALUATING HUMAN MOBILITY SYSTEMS

Human Mobility Systems (HMSes) need a procedure for rigorous evaluation that allows users of the data to understand
their limitations and their accuracy in various settings (e.g., what is the resulting transport mode detection performance
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Table 1: Summary of published mobility datasets, collected from android phones or dedicated GPS devices

Name Year Description

Opportunity Activity Recognition Challenge (Chavar-
riaga et al., 2013)

2011 12 users, 6 runs each, 72 wearable, object and ambient sensors,
indoor setting, no GPS

Microsoft Geolife Dataset (Zheng et al., 2008) 2012 182 users, 3 years, GPS data from dedicated devices
US-TransportationMode Set (Carpineti et al., 2018) 2018 13 users, 31 hours, multiple smartphone sensors, no GPS.
Sussex-Huawei Transportation-Locomotion (SHL)
Recognition Challenge (Wang et al., 2018)

2018 Single participant and single phone, 4 months, accelerometer, gy-
roscope, magnetometer, linear acceleration, gravity, orientation
(quaternions), ambient pressure, fused location (GPS/WiFi/cell)

under various sampling regimes?). Before establishing such a method, we need to understand the evaluation require-
ments, and the challenges associated with meeting each requirement:

• Holistic evaluation - power vs. overall accuracy: There is a clear power/accuracy trade-off for smartphone
sensing. Naı̈ve high accuracy sensing, even for low power sensors, quickly drains the battery (Srinivasan & Phan,
2012), but techniques to lower battery drain also lower the accuracy. So it is critical that the evaluation considers
accuracy in the context of the power consumed.
• Privacy preserving: The data collected by HMSes includes location traces, which are inherently privacy sensitive.
Location traces allow re-identification from the raw data alone (Zang & Bolot, 2011; de Montjoye et al., 2013), even
after replacing personally identifiable information!
• Ground truthed: In order to fully evaluate the data collected, we need ground truth for not just the mode, but also
the trip start and end times, section start and end times and the travel trajectory. Labeling trips through prompted recall
is a low effort technique to collect mode ground truth, but it is likely to be unreliable (Stopher et al., 2015, p.206-207).
Similarly, for evaluating trajectories, spatiotemporal ground truth is almost impossible to obtain after the fact.

With MobilityNet, we propose the first public dataset that meets all these requirements. It utilizes three novel concepts
in its construction: (1) artificial trips, which preserve privacy and provide spatial ground truth, (2) control phones,
which provide temporal reference data and comparisons to a baseline, and (3) repeated travel, which controls for con-
text sensitive variations in sensing. We implement a system that combines prior work on power evaluations (Shankari
et al., 2018b) with an existing HMS platform E-MISSION (Shankari et al., 2018a). The system consists of 3 main parts:

• Evaluation Specification: The spec describes an evaluation that has been or will be performed. In addition to
mode and trajectory ground truth, it includes the app configurations to be compared and the mapping from phones to
evaluation roles. The spec automatically configures both the data collection app and the standard analysis modules.
• Auto-configured Smartphone App: We developed a custom user interface (UI), focused on evaluation. It allows
evaluators to select the current spec from a public datastore and automatically download the potential comparisons to
be evaluated, the role mappings and the timeline. When the data collectors perform the trips, they mark the transition
ground truth in the UI and the app automatically displays the next step in the timeline (see Figure 1).
• Public Data + Sample Access Modules: Since there are no privacy constraints, our system uploads all collected
data to a public server. The associated repository contains sample Binder notebooks (Bussonnier et al., 2018) that can
download, visualize and evaluate the data associated with a particular spec.

3 MOBILITYNET

Our initial dataset contains 1080 hours of data from 3 artificial timelines. They cover 16 different travel contexts,
including newly popular modes such as e-scooter and e-bike (see Table 2). For each timeline, we collect data with
multiple phones and for different data collection regimes (e.g., sampling frequency). The detailed timeline specifica-
tions are included in the dataset.1 Our data collection had three main goals:

(1) Dwell time: Instead of focusing only on trips, we evaluate a timeline that included significant dwell time to capture
the impact of context sensitive behavior, such as Android’s built-in duty cycling. We set our timeline trips as round
trips with an intermediate dwell time ∼ 3× the mean travel time to the location.

1Dataset and documentation: https://mobility-net.org
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Figure 1: Shortened sample spec for a multi-modal trip, including transfers and waits for public transit.

Table 2: Summary of the collected timelines

Description Outgoing trip modes Incoming trip modes Overall

suburban round trip car (suburban street) bicycle 72h
downtown library car (freeway) escooter, bus rapid transit 216h
multi-modal trip across SF bay suburb walk, commuter train,

subway, city bus, university walk
ebike, express bus, downtown walk, light rail,
commuter train with tunnels, suburb walk

792h

Total 1080h

Figure 2

(2) Broad range of modes: Since we create artificial trips, we structure them to maximize
mode variety. To efficiently cover this space, we tried to ensure no mode was repeated. Even
similar modes (car, commuter rail) were in different travel contexts (e.g. street versus freeway)
for maximum variety. (3) Multi-modal transfers: Detecting multi-modal transfers is complex
because there is not a clear signal similar to a trip end. We ensure that there are many transition
examples when constructing our artificial trips.

The data is primarily from virtual sensors – closed source APIs built into the phone OS that
generate location and motion results from raw sensor data. These include:

• Fused location: Virtual sensor from GPS/WiFi/cellular signals. It includes timestamp (ts),
latitude, longtitude (always), and accuracy, speed, heading (sometimes).
• Motion activity: Virtual sensor from accelerometer/gyroscope/barometer signals. It in-
cludes ts, confidence, type (e.g. walking, automotive). It does not distinguish motorized modes.
• Trip transition events: Combination of virtual (e.g. exited geofence, visit started/ended)
and custom platform duty cycling events (e.g. stopped moving, tracking stopped, booted). It
includes ts, current state, transition. State and transition constants are defined in the platform.
• Battery: Voltage and current sensor. It includes ts, battery status, battery level percent.

3.1 CHALLENGE: FROM RAW DATA TO INDIVIDUAL MOBILITY DIARIES

A key challenge to deriving mobility insights for improving individual transportation behavior is converting the data
into an individual mobility diary. Figure 2 depicts such a diary, where the raw time series data has been converted into
trips and section trajectories with assigned transport modes. Multiple steps are necessary for its construction:

• Trip segmentation: Split into a linked sequence of trips and places. Since the phone OS automatically duty cycles
sensing to low power, the input timeseries will have gaps, and the first few points of a trip will be lost to cold starts.
• Section segmentation: Converts trips into a linked sequence of sections and stops. Each section represents travel
by one mode – multi-modal trips will consist of multiple sections while unimodal trips will consist of only one section.
• Trajectory filtering: Location data can frequently be very noisy and, particularly in underground sections, generate
errors in the range of 25km. This step identifies these erroneous points so that they can be removed.
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• Mode inference: Use inference algorithms to determine the mode for each section in the mobility diary. The
accuracy of inference algorithms typically varies widely across modes; modes with similar speed characteristics (e.g.,
bicycling and buses on city streets) are hard to distinguish, especially at low accuracy/frequency sensing levels.

3.2 METRICS AND BASELINE RESULTS

The analysis generates multiple outputs, so we need metrics along multiple dimensions: (1) Trip and section seg-
mentation: As metrics, we define the differences in the (i) count and (ii) start and end timestamps for the inferred and
ground truthed trips and sections. (2) Trajectory outlier detection: For spatial accuracy, the metric is the distribu-
tion of the perpendicular distance between the final route points and the ground truth trajectory. For spatio-temporal
accuracy, since we don’t have ground truth, we create a reference trajectory from the two accuracy control streams
and the spatial ground truth to compute against. (3) Section mode classification: Since the ground truth sections are
not guaranteed to match up to the inferred sections 1:1, we cannot directly use the F1 score. Instead, the metric is the
percentage of the inferred value that matches the ground truth.

Our baseline results are evaluated directly against the data, with no additional post-processing algorithms: (i) the
trips are segmented by the appropriate trip transition events, (ii) sections are segmented whenever the motion activity
changes, (iii) the mode is set to the new motion activity, but (iv) trajectories are unchanged.

Our results (Table 3) vary by sensing configuration and phone OS – e.g. lowering the sensing quality can lower
the power drain from 42% to 10% on android and from 10% to 2% on iOS. However, the median values in the
table do not fully capture the data complexity. For example, the median ∆ section count is consistently 0, so most
ground truthed sections were matched 1:1 to inferred sections. However, a boxplot shows many outliers, indicating
cases when one ground truth section (e.g. a fast bicycle ride) was broken up into multiple inferred sections (e.g.
alternating bicycling and motorized). Using such a section for downstream analysis, e.g. at the personal level, to
suggest an alternate transportation mode, or at the structural level, to determine the modes of transportation to work,
is clearly incorrect. The challenge to the AI/ML community is to use post-processing algorithms (e.g. a recent,
weakly-supervised approach for distinguishing between motorized modes; Fürst et al., 2020) to eliminate the outliers
while supporting more classes of travel and using minimum battery drain.

Table 3: Median values for the raw phone data from the downtown library timeline under various
accuracy and frequency sensing settings. The mode labels are the one detected on the phone (walk,
bike, vehicle). While the median results are good, outliers, such as for section count (right) can reach
up to 10 on both android (top) and iOS (bottom). Lowering them is the primary challenge.

android iOS
metric goal h, h m, h h, m h, h m, h h, m

battery drain (%) low 42 30 10 10 2 10
trajectory error (m) low 6 5 10 6 15 3
∆ trip count low 0 0 0 0 0.5 1
∆ section count low 0 0 0 0 0 0
∆ trip start (min) low 4 5 5 5 5 4
∆ trip end (min) low 5 30 5 2 1 0
∆ section start (min) low 2 0 3 1 0.5 2
∆ section end (min) low 0 1 0 3 5 2
Mode match ratio high 1 1 0.99 0.9 0.8 0.9

4 CONCLUSION

We present MobilityNet, the first public, smartphone-based dataset for multi-modal mobility that: (i) includes data
from multiple smartphone OSes, (ii) includes detailed ground truth, (iii) addresses power/accuracy tradeoffs, and
(iv) preserves privacy thanks to artificial trips. We also define metrics for the segmentation, smoothing and mode
inference required to model a mobility diary and implement them in jupyter notebooks, included in our dataset.

This dataset can form the basis of challenges such as WordNet/ImageNet. Such challenges can also motivate similar
data collection in other regions, which can improve the scope and generalizability of future challenges. The stan-
dardization associated with such challenges can also enable hybrid competitions, in which the public dataset acts as a
training set, while large-scale datasets which cannot be published since they contain real travel patterns (e.g. from the
Transportation Secure Data Center; Holden et al., 2018), can act as test set. Such challenges allow direct comparisons
between implementations and can help improve the state-of-the art in this important domain.
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